Exercise 3.1.5

Prove Theorem 3.1

The theorem states:

For any two functions f(n)f(n) and g(n)g(n), we have f(n)=Θ(g(n))f(n) = \Theta(g(n)) if and only if f(n)=O(g(n))f(n) = O(g(n)) and f(n)=Ω(g(n))f(n) = \Omega(g(n)).

From f(n)=Θ(g(n))f(n) = \Theta(g(n)), we have that:

0c1g(n)f(n)c2g(n)for n>n0 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \quad \text{for } n > n_0

We can pick the constants from here and use them in the definitions of OO and Ω\Omega to show that both hold.

From f(n)=Ω(g(n))f(n) = \Omega(g(n)) and f(n)=O(g(n))f(n) = O(g(n)):

0c3g(n)f(n)for all nn10f(n)c4g(n)for all nn2 0 \leq c_3g(n) \leq f(n) \quad \text{for all } n \geq n_1 \\ 0 \leq f(n) \leq c_4g(n) \quad \text{for all } n \geq n_2

If we let n3=max(n1,n2)n_3 = \max(n_1, n_2) and merge the inequalities, we get:

0c3g(n)f(n)c4g(n)for all n>n3 0 \leq c_3g(n) \leq f(n) \leq c_4g(n) \quad \text{for all } n > n_3

Which is the definiition of Θ\Theta.