Exercise 10.3.1
Draw a picture of the sequence $\langle 13, 4, 8, 19, 5, 11 \rangle$ stored as a doubly linked list using the multiple-array representation. Do the same for the single-array representation.
Let the indexes start from 1. To make things interesting, let's write the elements in increasing order:
+---+
| L |--------------------------------------+
+---+ V
1 2 3 4 5 6 7 8 9 10 11 12
+----+----+----+----+----+----+----+----+----+----+----+----+
next | | 5 | | 7 | 10 | | / | 2 | | 4 | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
key | | 4 | | 5 | 8 | | 11 | 13 | | 19 | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
prev | | 8 | | 10 | 2 | | 4 | / | | 5 | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
I'll do the next one in a slightly more compact fashion:
1 2 3 4 5 6 7 8 9 10 11 12
+----+----+----++----+----+----++----+----+----++----+----+----++--
| 4 | 7 | 13 || 5 | 10 | 16 || 8 | 16 | 1 || 11 | / | 4 ||
+----+----+----++----+----+----++----+----+----++----+----+----++--
13 14 15 16 17 18
--++----+----+----++----+----+----+
|| 13 | 1 | / || 19 | 4 | 7 |
--++----+----+----++----+----+----+