Exercise C.1.6
Prove the identity
$$ \binom{n}{k} = \frac{n}{n-k}\binom{n-1}{k} $$
for $0 \le k < n$.
$$ \binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{n-k}\frac{(n-1)!}{k!(n-1-k)!} = \frac{n}{n-k}\binom{n-1}{k} $$
Prove the identity
$$ \binom{n}{k} = \frac{n}{n-k}\binom{n-1}{k} $$
for $0 \le k < n$.
$$ \binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{n-k}\frac{(n-1)!}{k!(n-1-k)!} = \frac{n}{n-k}\binom{n-1}{k} $$