Exercise C.2.5
Prove that for any collection of events $A_1,A_2,\ldots,A_n$
$$ \Pr\{A_1 \cap A_2 \cap \cdots \cap A_n\} = \Pr\{A_1\} \cdot \Pr\{A_2 | A_1\} \cdot \Pr\{A_3 | A_1 \cap A_2\} \cdots \Pr\{A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1}\} $$
This is nice
$$ \begin{aligned} \Pr\{A_1 \cap A_2 \cap \cdots\} &= \Pr\{A_n | A_1 \cap \cdots \cap A_{n-1}\} \cdot \Pr\{A_1 \cap \cdots \cap A_{n-1}\} \\ &= \Pr\{A_n | A_1 \cap \cdots \cap A_{n-1}\} \cdot \Pr\{A_{n-1} | A_1 \cap \cdots \cap A_{n-2}\} \cdot \Pr\{A_1 \cap \cdots \cap A_{n-2}\} \\ &= \ldots \\ &= \Pr\{A_n | A_1 \cap \cdots \cap A_{n-1}\} \cdots \Pr\{A_3 | A_1 \cap A_2\} \cdot \Pr\{A_2 | A_1\} \cdot \Pr\{A_1\} \end{aligned} $$